
Are we speaking the industry language? The practice and
literature of modernizing legacy systems with microservices
Thelma E. Colanzi

Aline M. M. M. Amaral
State University of Maringá

Maringá, PR, Brazil

Wesley K. G. Assunção
Pontifical Catholic

University of Rio de Janeiro
Rio de Janeiro, RJ, Brazil

Arthur C. Zavadski
Douglas Tanno

State University of Maringá
Maringá, PR, Brazil

Alessandro Garcia
Carlos Lucena
Pontifical Catholic

University of Rio de Janeiro
Rio de Janeiro, RJ, Brazil

ABSTRACT
Microservice architecture has gained much attention in the last
few years in both industry and academia. Microservice is an archi-
tectural style that enables developing systems as a suite of small
loosely coupled, and autonomous (micro)services that encapsu-
late business capabilities and communicate with each other using
language-agnostic APIs. Despite the microservice adoption for mod-
ernizing legacy systems, few studies investigate how microservices
are used in practice. Furthermore, the literature still scarce on pre-
senting studies on why and how the modernization is conducted in
practice in comparison to existing literature on the subject. Thus,
our goal is to investigate if industry and academy are speaking the
same language concerning the modernization of legacy systems
with microservices, by means of a rigorous study on the use of
microservices in the industry. For doing so, we design a survey to
understand the state of practice from the perspective of a modern-
ization process roadmap derived from the literature. In this paper,
we report the results of a survey with 56 software companies, from
which 35 (63.6%) adopt the microservice architecture in their legacy
systems. Results pointed out the most expected benefits that drive
the migration to microservices are easier software maintenance,
better scalability, ease of deployment, and technology flexibility.
Besides, we verified, based on a set of activities defined in the
modernization process, that the practitioners are performing their
migration process according to the best literature practices.

CCS CONCEPTS
• Software and its engineering → Software evolution; Soft-
ware architectures; • General and reference → General litera-
ture; • Computer systems organization → Cloud computing.

KEYWORDS
Software Re-engineering, Software Migration, Microservices

ACM Reference Format:
Thelma E. Colanzi, Aline M. M. M. Amaral, Wesley K. G. Assunção, Arthur
C. Zavadski, Douglas Tanno, Alessandro Garcia, and Carlos Lucena. 2021.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SBCARS ’21, September 27-October 1, 2021, Joinville, Brazil
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8419-3/21/09. . . $15.00
https://doi.org/10.1145/3483899.3483904

Are we speaking the industry language? The practice and literature of mod-
ernizing legacy systems with microservices. In 15th Brazilian Symposium
on Software Components, Architectures, and Reuse (SBCARS ’21), September
27-October 1, 2021, Joinville, Brazil. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3483899.3483904

1 INTRODUCTION
In a software system with a monolithic architecture, all layers such
as user interface, business rules, and database management are
developed as one single piece [32]. The monolithic architecture
was the standard decomposition strategy in prevailing architec-
tural styles for many years. However, at some point, monoliths
often become legacy systems with decayed architectures and ob-
solete technologies. These factors imply that any change usually
impacts a large part of the system [19]. A possible solution being
increasingly considered by companies is modernizing their systems
by extracting legacy features into microservices to achieve struc-
tural, functional, and data decoupling [10, 13]. Microservice-based
systems are developed as a suite of small, loosely coupled, and au-
tonomous microservices. These microservices encapsulate business
capabilities, their owned data, and communicate with each other
using language-agnostic APIs [32]. The modernization of legacy
systems with microservices also enables digital transformation and
inclusion of innovation [22].

In our context, the modernization comprehends the process
starting from the identification of driving forces governing the
microservice adoption. The process takes into account all the trans-
formations required in the legacy’s functionalities, the database
(or any data storage schema), and those related to operations to a
microservice architecture. Finally, the modernization process also
considers the verification, validation, and monitoring of the system
following now the microservice architecture decomposition [43].

The topic of modernizing legacy systems with microservices has
been investigated from different perspectives. Some pieces of work
present approaches, techniques, and methods for guiding some
modernization activities [11, 12, 14, 35, 43]. They mostly focus on
dealing with the structure of the source code – i.e., the legacy’s mod-
ules and their dependencies. However, these existing solutions often
neglect the data model structure [8], which is also of paramount
importance. For instance, the data model knowledge is required for
making key decisions on the microservices’ decomposition.

Other studies report on the modernization with microservices in
practice, usually considering only specific activities. These studies
do not cover the entire process [1, 5, 17, 18, 26, 28, 29, 38]. Further-
more, some existing surveys with practitioners focus on exploratory
studies [6, 7, 10, 13, 40, 42]. However, gaps between the visions and

https://doi.org/10.1145/3483899.3483904
https://doi.org/10.1145/3483899.3483904

SBCARS ’21, September 27-October 1, 2021, Joinville, Brazil Thelma E. Colanzi, et al.

the reality of microservices need to be empirically investigated [44]
and the body of existing studies about the modernization with mi-
croservices has various unaddressed limitations. Most studies only
partially investigate the modernization process, being restrict to
a few activities, most often concerning the preliminary identifi-
cation of potential microservices in the legacy system. A recent
proposal for conducting the modernization was synthesized from
existing studies [43]; however, it lacks empirical evaluation. In ad-
dition, the studies mainly deal with source code of legacies; little
is known about the modernization challenges regarding the data
model decoupling through the microservice decomposition [10].

Characterizing practical evidence of why and how the whole
modernization process governing the system’s artifacts, including
data model schemes, is conducted is of paramount importance to
guide new studies in the field. This knowledge would also serve as
an experience report for companies willing to start the moderniza-
tion of their legacies, and feed tool builders with practical aspects
that need to be taken into account.

Motivated by the aforementioned limitations, the goal of this
work is to characterize the modernization process [43], described
in Section 2, from the perspective of practitioners from software
companies, who observed the need of modernizing legacy systems
by following the microservice architectural style. We inquired the
practitioners about their experience with the whole process starting
from the driving forces for the modernization to the monitoring
of the microservices. We also asked questions to confirm which
are the criteria and granularity used for splitting the legacy, tech-
nologies, and tools used in practice in comparison to the literature.
Furthermore, given the few studies on data decoupling, our study
dedicated a set of questions about the role of the data entities and
persistence in the modernization process, in order to investigate
the alignment between the practice and the literature.

The results revealed that industry and academia are speaking the
same language regarding the modernization of legacy systems with
microservices. More specifically, the most common driving forces
match with the microservice advantages claimed in the literature.
The participating companies usually plan the modernization of the
legacy system before executing the migration. The way of conduct-
ing the migration process is also aligned with the recommendations
of performing an incremental migration, extracting loosely coupled
microservices with single-responsibility and isolated database [32].
Most companies also monitor several aspects of the microservices
extracted from the legacy system. Furthermore, the results pointed
out that there is room for improvement in areas such as (i) cou-
pling between microservices induced by database structure, shared
persistent libraries, and central database usage; (ii) more adequate
microservice granularity by analyzing database transactions and
(iii) performance level via microservice database partitioning.

The main contributions of this work are: (i) our survey provides
a comprehensive characterization of the industrial practice on mod-
ernizing legacy systems with microservices; (ii) our results point
out that the industrial practices for migrating to a microservice
architecture are aligned with the existing research, focusing on
practical needs of industry; (iii) our findings reinforce that the
modernization process roadmap [43] is a good starting point for
onboarding companies willing to start a migration to a microservice
architecture; and, (iv) we have identified research opportunities

regarding database aspects as both an input to the modernization
process and a factor to reduce microservices coupling at runtime.

2 MODERNIZATION PROCESS ROADMAP
In our recent work, we present a process for modernizing legacy
systems with microservices [43]. The process was distilled from 62
primary sources following a systematic mapping study, represent-
ing the theoretical knowledge produced in academia from technical
reports, case studies, and surveys. The modernization process has
eight activities, which are grouped in four phases, namely Initiation,
Planning, Execution, and Monitoring (see Figure 1). Next we briefly
describe the activities of this process.
1. Analyze the driving forces: this activity is conducted to guide
companies to identify/understand the limitations faced with the
legacy system. Then, all stakeholders can reason and decidewhether
a modernization with microservices is a feasible solution. The driv-
ing forces can be related to technical, operational, and organiza-
tional aspects. This activity is crucial to avoid unsuccessful mod-
ernization and waste of resources.
2. Understand the legacy system: this activity aims at analyzing
the legacy system to understand its implementation, architecture,
features, modules, how these parts interact with each other.
3. Decompose the legacy system: the goal of this activity is to
split the legacy system in small and cohesive parts. These parts are
the basis for the microservices.
4. Define the microservice architecture: here practitioners de-
fine a microservice architecture with the design decisions to meet
functional and non-functional properties. A microservice archi-
tecture describes the microservices, their APIs, strategy of service
discovery, and communications. The goal is to pack user interfaces,
business logic, and databases in a single microservice.
5. Execute themodernization: in this activity, the transformation
of the implementation artifacts takes place.
6. Integrate the microservices and the legacy: considering an
incremental modernization (strangler pattern [13]), the goal here is
to integrate the microservices and the legacy system.
7. Verify and validate themicroservices: activity responsible for
verifying and validating whether the microservices were developed
and integrated accordingly. The legacy parts of the monolithic
system can be used as oracle for the testing activity.
8. Monitor the microservices and infrastructure: this activity
focuses on constantly checking the behavior of the microservices.
Monitoring relies on service availability, bottlenecks, performance,
use of infrastructure resources, etc. The pieces of information gen-
erated here can serve as a basis to evaluate the success of the
modernization, as for example, in comparison to the driving forces.

3 STUDY DESIGN AND EXECUTION
Our empirical study consists in a survey conducted in the industrial
scenario, relying on guidelines presented by Linaker et al. [25].
This survey was conceived in order to answer the research question
(RQ): Are the practice and literature of the modernization of
legacy systems with microservices aligned?

Are we speaking the industry language? Modernizing legacy systems with microservices SBCARS ’21, September 27-October 1, 2021, Joinville, Brazil

This main RQ was divided into the three following sub-RQs, to
analyze the survey’s results against the literature, as follows:

- RQ1. Why do companies migrate monolithic legacy sys-
tems to microservices? To answer this sub-RQ we analyzed
which are the driving forces that motivate the software compa-
nies to migrate to a microservice architecture.

- RQ2. How do companies perform the migration of
monolithic legacy systems to microservices? In this question
we analyzed how the migration process to a microservice archi-
tecture has been conducted by software companies in terms of the
activities of the modernization process roadmap [43].

- RQ3.What are the aspects of data persistence considered
in the modernization of legacy systems with microservices?
To answer this question we analyzed how the database is struc-
tured in the microservice-based systems and if its structure and
transactions were used as input to the modernization process.

We designed and applied the survey questionnaire using Google
Forms. The questionnaire encompassed closed-ended and open-
ended questions about the modernization of legacy systems using
microservices. Taking into account the RQs to be answered in this
work, the questionnaire1 contained questions about (i) the partic-
ipant and software company characterization, (ii) technical and
organizational questions regarding the use of microservices to mod-
ernize legacy systems, answered only by participants whose compa-
nies adopt microservice architectures, and (iii) questions directed to
participants whose companies do not adopt microservices, aiming
at knowing their intention of using microservices to modernize
legacy systems in the future. The options for the second group of
questions were extracted from the literature [2, 3, 7, 10, 43].

The population defined for the study was composed of soft-
ware engineers/practitioners that work at software companies. The
survey was spread on social networks and by direct e-mail with
individuals belonging to the population addressed that are contacts
of the authors. The questionnaire circulated over one month and,
we received only one answer per company.

3.1 Characterization of Participants
We received 56 answers of practitioners from different software
companies. These companies are in three different countries: Brazil
(54), United States of America (1), and England (1). Most of them
(96.4%) are distributed across seven states of Brazil, namely Paraná,
São Paulo, Santa Catarina, Distrito Federal, Espírito Santo, Rio de
Janeiro, and Rio Grande do Norte. The participants are mainly
software developers: 35 (62.5%). Other roles also mentioned were:
software engineer 4 (7.1%), software architect 5 (8.9%), coordinator
3 (5.4%), project manager 3 (5.4%), tester 2 (3.8%), director 2 (3.8%),
chief executive officer 1 (1.8%), and technology manager 1 (1.8%).

Regarding the organizational structure, 31 (55.4%) companies
defined their hierarchical structure considering the business area,
23 (41.7%) used the development area, and only 2 (3.6%) considered
both areas to arrange their organizational structure. Most compa-
nies (33 - 58.9%) had their teams working in different locations
before COVID-19 pandemic, while 23 (41.1%) had all team members
working together in the same locations. These numbers show that it

1Available at: https://doi.org/10.5281/zenodo.5260058

is common for companies using the microservice architecture hav-
ing working teams allocated in different locations, as the division of
teams responsible for each microservice is facilitated, corroborating
some findings from the literature [23, 39].

The questionnaire characterization section endedwith a question
about the use of microservices in the companies. The data collected
demonstrate a positive scenario to the adoption of this architectural
style with 35 (63.6%) of the companies using microservices in their
projects, while 21 (36.7%) still do not use this style.

3.2 Companies not using Microservices
The survey aims at analyzing the use of microservices in software
companies. Thus, Section 4 presents only results regarding compa-
nies using the microservice architectural style. In this section, we
present a brief analysis of the 21 (36.7%) companies that do not use
this architectural style.

We asked three questions to these participants. The first question
was whether they have knowledge about microservice architecture,
for which 17 (81.0%) answered “yes” and 4 (19.0%) answered “no”.
It is important to observe that, even not using microservices, most
participants stated having knowledge about this architectural style.
The participants were also asked about the architectural pattern
used in their companies, the answers demonstrate that 20 (95.2%)
companies use monolithic architecture, while 1 (4.8%) uses hexago-
nal architecture. Finally, we asked the participants about the feasi-
bility of their companies to migrate to microservice architecture.
Nine (42.9%) stated “yes” and 7 (33.3%) stated “no”, demonstrating
a draw for the future use of this architectural style.

4 RESULTS AND ANALYSIS
Firstly, we asked to participants which activities of the moderniza-
tion process roadmap [43] are/were performed in their companies
for modernizing legacy systems with microservices. Only 6 out of
35 (17.2%) participants answered that no activity was performed.
However, for 5 of them it was not a modernization process, but the
system has already been developed using microservices. The other
participants (29 out of 35, 82.8%) selected several activities as can be
seen in Figure 1, where we present (inside the circles) the number
of times each activity was selected in the survey. The two most
common activities refer to the modernization planning: Understand
the legacy system and Decompose the legacy system. Both activi-
ties were performed by 74.3% of the software companies. Other
four activities also selected by most participants were: Integrate
the microservices and the legacy (68.6%), Analyze the driving forces
(62.9%), Define the microservice architecture (60.0%), and, Monitor
the microservices/infrastructure (60.0%).

The two least selected activities were Verify and validate the
microservices (54.3%) and Execute the modernization (48.6%). For the
former, it is known that testing microservice-based systems is more
complex than testing monolithic systems [37]. However, we infer
that for both activities there was a misunderstanding, because the
participants argued that their systems have a microservice architec-
ture, thus they have modernized their legacy systems, which is the
goal of the latter activity, and companies usually perform at least
unit and integration testing.

https://doi.org/10.5281/zenodo.5260058

SBCARS ’21, September 27-October 1, 2021, Joinville, Brazil Thelma E. Colanzi, et al.

Initiation Planning Execution Monitoring

2626 2422 21 211917

1. Analyze the
driving forces

2. Understand
the legacy

system

3. Decompose
the legacy

system

4. Define the
microservice
architecture

5. Execute the
modernization

6. Integrate the
microservices
and the legacy

7. Verify and
validate the

microservices

8. Monitor
microservices

and infrastructure

Figure 1: Roadmap Activities for modernizing legacy systems with microservices and their frequency of realization

Participants could add activities in addition to those encom-
passed by the modernization process. The participant P4 added an
activity related to assess the migration feasibility. He argued that
it is needed “to assess if the migration is worthwhile or if building a
microservice-based layer to integrate with the legacy system is enough
to enable scalability and appropriate infrastructure use.”

Given the frequency of each activity, we observe that most activ-
ities of the modernization process roadmap are in fact performed
by companies during the modernization of their legacy systems,
reinforcing that such a roadmap can serve as a starting point and
guide to the modernization process with microservices.

4.1 Modernization Process Roadmap Activities
In what follows, we present the findings extracted from the survey
answers organized by activity.

1. Analyze the driving forces. In a multiple-choice question,
the participants were asked about which were the driving forces to
the modernization of their legacy systems with microservices. The
11 driving forces identified in the modernization process roadmap
were chosen by the participants. No additional driving force was
cited in the open field Others. Table 1 presents these driving forces
sorted by the most mentioned ones.

Results point out that several types of driving forces motivate the
modernization under different perspectives, namely operational,
technical, and organizational (last column of Table 1). Also, some
participants cited driving forces from different perspectives. There
is not a dominant perspective that motivates the modernization
with microservices, what points out that software companies aim
at the benefits of microservices related to technical, operational
and organizational aspects of software development.

Interestingly, the three most common driving forces are the same
identified in the literature [13, 43]: Easier maintenance and evolution,
Optimized scalability, and Independent and automated deploy. These
forces were cited by more than 70% of participants. Technology
flexibility and Reduced time to market were also pointed by more
than 50% of participants as motivation to adopt microservices.

Table 1: Driving forces

Driving Force Total (%) Perspective
Easier maintenance and evolution 30 (85.7%) Technical
Optimized scalability 26 (74.3%) Operational
Independent and automated deploy 25 (71.4%) Operational
Technology flexibility 23 (65.8%) Technical
Reduced time to market 18 (51.4%) Organizational
Loosely coupled services 16 (45.7%) Technical
Independence of teams 14 (40.0%) Operational
Agility enabler 12 (34.3%) Organizational
Cohesive services 12 (34.3%) Technical
Easier reuse 8 (22.9%) Technical
Infrastructure facilities 7 (20.0%) Operational

In summary, it is noticeable that supporting operational tasks are
the most common driving forces to adopt microservices, in addition
to technical benefits of microservices, e.g., easier maintenance and
evolution task and use of different technologies [7, 9, 31, 35, 45].

2. Understand the legacy system. One of the most cited driv-
ing forces is optimized scalability as presented in Table 1. In addi-
tion, this criterion and other such as requirements, reusability and
coupling (see Figure 2) are the most used when companies decide
to extract microservices. It is important to observe that to use these
criteria is mandatory to understand the requirements and how they
were located in the code. Hence, identifying the features is a task
realized by most companies. These results are corroborated by stud-
ies as [4], which stated that the first task to understand the legacy
system is to list all the features of the system. Besides, according
to [2, 36], the following task is the identification of the implemen-
tation artifacts of each feature, to subsequently decouple/extract
them as microservices, which is known as feature location. Sev-
eral techniques are used to perform these tasks as presented in the
modernization process roadmap, an example was mentioned by the
participant P43, which uses the Domain Driven Design (DDD) to
identify the main features of the system.

3. Decompose the legacy system. One important decision to
migrate to microservices is the strategy adopted by the software
companies. Considering that, we asked to the participants how
this migration occurred, 18 (51.4%) companies performed an incre-
mental migration, where some projects or system modules were
implemented using this architecture, in accordance with the litera-
ture recommendation [20]. Besides, 15 (42.9%) companies migrated
their entire systems immediately to microservices, and 2 (5.7%) use
both strategies, according to their needs.

In another question, we asked the participants how their legacy
systems were decomposed into microservices. Twenty (57.1%) com-
panies extracted only one microservice from the legacy system at
a time. For instance, P27 stated that they perform an incremental
domain-driven decoupling of the legacy system applying the stran-
gler pattern [13], which allows an incremental transformation of
the monolithic legacy system by replacing a particular function-
ality with a new microservice. In addition, 18 (51.4%) companies
have decomposed their systems by business capability, defining
the responsibility of the microservice. Finally, 7 (20.0%) companies
decomposed their systems based on system operations and their
data, whereas 2 (5.71%) did it based on UML diagrams.

We also asked participants about the criteria used when deciding
to extract microservices. The results showed that 85.7% of compa-
nies considered scalability as a relevant criterion, probably because
a good level of system scalability is enabled by improving and ex-
panding a microservice without the need to modify other parts
of the system, accelerating processes and saving costs, time and
work [30]. Requirements and reusability were also identified as

Are we speaking the industry language? Modernizing legacy systems with microservices SBCARS ’21, September 27-October 1, 2021, Joinville, Brazil

30 (85.7%)Scalability
16 (45.7%)Requirements
16 (45.7%)Reusability

15 (42.9%)Coupling
12 (34.3%)Cohesion

8 (22.9%)Database
4 (11.4%)Variability

2 (5.7%)Network overhead
1 (2.9%)Performance
1 (2.9%)Maintainability

0 4 8 12 16 20 24 28

Figure 2: Criteria used for the microservice extraction.

6 (17.1%)Unnecessary segmentation
4 (11.4%)Maintainability

3 (8.6%)Load balancing
3 (8.6%)Database structure
3 (8.6%)Knowledge of the whole ecosystem

2 (8.6%)Reusability
2 (8.6%)Microservice responsibility

3 (8.6%)Others

0 2 4 6 8

Figure 3: Concerns on the microservice granularity.

important criteria by 45.7% of companies, followed by coupling
with 42.9%, in accordance with the findings of Carvalho et al. [7].
Figure 2 presents the number of occurrences of each criterion.

An important issue related to the microservice identification is
the definition of the correct level of granularity, that is, the trade-
off between size and number of microservices [43]. Results of an
open-ended question of our survey show that the companies are
concerned on the microservice granularity. Figure 3 presents their
main concerns, for which the unnecessary segmentation was the
most cited (17.1 %). This can be observed in answers of participants
P28: “we are careful to not create nano microservices” and P40: “main
concern is to create unnecessary microservices”. The figure presents
other responses, such as maintainability (11.4%), load balancing
(8.6%), database structure (8.6%), knowledge of the whole ecosystem
(8.6%), reusability (8.6%), and microservice responsibility (8.6%).
The least popular concerns, grouped in the item Others, such as
orchestration (2.9%), testability (2.9%), and integration (2.9%).

4. Define the microservice architecture. As a result of the
driving forces related to technology flexibility and easier mainte-
nance and evolution, the majority (64.5%) of the software companies
that answered this survey uses more than one programming lan-
guage. 11 (35.5%) companies use two programming languages, 6
(19.4%) use three languages, 1 (3.2%) uses four languages, 2 (6.5%)
vary according to the system. The remaining 11 (35.5%) companies
use only one programming language.

Aligned with the literature recommendation [42], 20 (57.1%)
companies define owners for each microservice. The “owner” is a
developer/engineer who is primarily responsible for investigating
and solving problems related to a specific microservice. The other
15 (42.9%) companies do not define owners by microservice.

Regarding cloud infrastructure, 34 (97.1%) of the participating
companies use cloud infrastructure services. Only 1 company does
not use such a service. Figure 4 presents the cloud services used
by companies. The Amazon Web Services (AWS) is the most used
cloud infrastructure, being cited by 26 (74.3%) companies. 5 (14.3%)
companies use their own cloud infrastructure.

26 (74.3%)Amazon Web Services (AWS)
5 (14.3%)Company’s own infrastructure
4 (11.4%)Microsoft Azure
3 (8.6%)Google Cloud
2 (5.71%)Oracle Cloud
2 (5.71%)DigitalOcean

0 4 8 12 16 20 24 28

Figure 4: Cloud infrastructure used.

We also asked whether the software companies follow any strat-
egy for the definition of new microservices. If so, the participants
might describe the strategy. Eight (22.8%) participants explicitly
answered that they did not define any formal strategy for doing
that. Participants cited four different strategies used to define new
microservices, as follows: (i) new business functionalities (11.4%),
(ii) bottleneck identification through performance issues (11.4%),
(iii) areas of interest of the application layer (2.9%), and (iv) process
instance based on the Open Application Model (OAM) (2.9%).

When defining the microservice architecture, practitioners need
to decide how to deal with reuse needs. Then, in another question,
we asked whether there is duplicate code in different microservices.
A number of 27 (77.1%) participating companies answered that there
is no duplication of source code in their systems. The participant
P4, who works in one of these companies, stated that “We do not
duplicate source code. However, when some component is shared by
more than one team, its maintenance is also shared”. On the other
hand, in 8 (22.9%) companies there is code duplication in different
microservices, with the goal of (i) enabling the customization of
some functionality or (ii) performing similar operations in different
microservices, usually related to infrastructure issues. 2 partici-
pants stated that the code duplication occurs in the beginning of
the migration process, to allow the incremental migration to the
microservice architecture.

We observe that each company deals with duplication in different
ways, probably due to the lack of formal approach to guide compa-
nies to explore reuse of source code in the context of microservice
architecture [6]. The companies that have code duplication pointed
different ways to deal with the duplication, they are: (i) building
libraries shared between services for allowing reuse (4 answers,
11.4%); (ii) Schema Registry used to prevent duplication of data
transfer object used in messages (1 answer, 2.9%); (iii) simultaneous
changes and simultaneous delivery (1 answer, 2.9%); (iv) leave the
code only in the microservice which is more appropriate to the
functionality, resulting in a coupling between microservices (1 an-
swer, 2.9%); and (v) when they judge that duplication is necessary,
there is no duplicate code traceability or documentation, to prevent
the coupling generated between microservices (1 answer, 2.9%).

We also asked the participants about the communication inter-
face used to integrate microservices in their companies. Figure 5
presents the results of this question, demonstrating a clear predom-
inance of the REST APIs (80.0%) followed by Messaging (20.0%),
Simple HTTP (14.3%), gRPC (8.6%), Apache Kafka (5.75%), Queues
(5.75%), and Service Mesh (5.75%). This result is similar to stud-
ies as [1] that discusses that microservices aim at transforming
software systems in packages of independent small services, devel-
oped in different platforms, executing their own process through
communication interfaces, such as REST APIs or HTTP API.

SBCARS ’21, September 27-October 1, 2021, Joinville, Brazil Thelma E. Colanzi, et al.

28 (80.0%)REST APIs
7 (20.0%)Messaging

5 (14.3%)Simple HTTP (POST/GET)
3 (8.6%)gRPC
2 (5.7%)Apache Kafka
2 (5.7%)Queues
2 (5.7%)Service Mesh

0 4 8 12 16 20 24 28

Figure 5: Communication tools used.

21 (60.0%)Spring Boot
8 (22.9%)ASP.NET

6 (17.1%)Spring Cloud and NetFlix OSS
3 (8.6%)Eclipse RCP

2 (5.7%)Quarkus
2 (5.7%)Slim

17 (48.6%)Others
2 (5.7%)None

0 2 4 6 8 10 12 14 16 18 20 22

Figure 6: Frameworks used.

In addition to the questions whose results were presented here,
the database structure also impacts the definition of microservice
architectures. However, as the survey has ten questions regarding
the database structure and management, the results about this
subject are presented in Section 4.1.

5. Execute the modernization. The questionnaire also asked
questions related to technologies used to automate the process of
re-engineering the legacy systems using microservices. Figure 6
presents the frameworks mentioned and the number of companies
that use them. The most popular frameworks are: Spring Boot
(60.0%), ASP Net (22.9%), Spring Cloud and NetFlix OSS (17.1%),
Eclipse RCP (Rich Client Platform) (8.6%), Quarkus (5.7 %), and
Slim (5.7%). The least popular frameworks were cited once, grouped
in the Others item (17 answers, 46.6%). Two companies (5.7%) stated
that they do not use frameworks.

Figure 7 shows the continuous integration tools used by the
companies. The most used tools are Jenkins (60.0%), followed by
Azure (17.1 %), Gitlab CI (17.1 %) and Circle CI (17.1 %). The other
tools, grouped in the Others item, include AWS Pipeline, BildKite,
Envoyer, Droid and TeamCity, which were cited once (2.9%). Five
companies (14.3%) stated not using tools.

Regarding the automation of the configuration management, 32
(91.4%) companies use containerization, such as Docker, to manage
microservices, whereas only 3 (8.6%) do not use containerization.

6. Integrate the microservices and the legacy. This activ-
ity refers to the decisions on how to put together the legacy and
the modernized parts of the system [43]. As the modernization of
the legacy with microservices is usually an incremental process,
we investigated whether the participating companies needed to
reactivate or reuse some functionality already migrated from the
legacy due to a problem in the resulting microservice. Only 5 (14.3%)
companies answered that yes.

When asked about the reason for this reactivation of the legacy
functionality, we received 5 different answers. Three reasons are
related to development issues: (i) bugs in the new implementation
that were not identified by the quality assurance team; (ii) integra-
tion error due to a problem in the build of one microservice; and

21 (60.0%)Jenkins
6 (17.1%)Azure
6 (17.1%)Gitlab CI

2 (5.7%)Circle CI
5 (14.3%)Others
5 (14.3%)None

0 2 4 6 8 10 12 14 16 18 20 22

Figure 7: Continuous integration tools used.

29 (82.9%)Unit testing
27 (77.1%)Integration testing

13 (37.1%)Black-box testing
2 (5.7%)Load testing
1 (2.9%)Stress testing
1 (2.9%)Performance testing

0 4 8 12 16 20 24 28

Figure 8: Types of test applied to verify microservices.

(iii) design decisions to reactivate the legacy functionality because
synchronizing data on different databases was not feasible. The
other remaining reasons are related to infrastructure: (iv) the system
performance was not good enough in the production environment,
and (v) problem with integration with third-party systems.

Interestingly, the participant P28, who answered that its com-
pany never reactivated one microservice, stated that “if you are
migrating to microservices and you feel like going back to the mono-
lithic architecture, you are doing something wrong. There are classical
migration mistakes: 1. you do nano services, 2. you duplicate data,
3. you destroy the network, 4. you do not scale the system but scale
the invoice; thus, what should solve your problems creates a lot of
them.” So P28 corroborates the Richardson and Smith´s [37] state-
ment that “There are no silver bullets. Like every other technology,
the microservice architecture pattern has drawbacks.”

7. Verify and validate the microservices. Despite only 19
participants have selected the activity of verifying and validating
the microservices, when asked about which type of testing they
perform to verify the microservices, only 4 (out 35) stated that none
type of testing is applied in their respective software companies,
corroborating our inference that there was a misunderstanding
during the answering of the question about the activities of the
modernization process roadmap.

Testing a microservice-based system is much more complex than
testing amonolithic system [37]. To test a class of amicroservice, we
need to launch that service and any services that it depends upon,
or at least configure stubs for those services. Higher levels of test
require similar configuration. Despite this complexity, 88.5% of the
participating companies execute testing tasks. Figure 8 presents the
type of test applied to verify microservices. Unit testing is applied
by 82.9% of companies, followed by integration testing (77.1%). Load
testing, stress testing and performance testing were cited by 5.7%,
2.9% and 2.9% of the participants, respectively. In addition, 37.1% of
participants stated they execute black-box testing.

8. Monitor the microservices and infrastructure. The use
of microservice-based systems implies in constantly monitoring
the behavior of the deployed microservices. This monitoring in-
cludes, for example, to check how the most used microservices are
performing and scaling, the level of coupling between different

Are we speaking the industry language? Modernizing legacy systems with microservices SBCARS ’21, September 27-October 1, 2021, Joinville, Brazil

23 (65.7%)Monitoring containers and what runs inside them
22 (62.9%)Monitoring APIs

19 (54.3%)Orquestration systems
14 (40.0%)Preparing for elastic and multinational services

7 (20.0%)Mapping monitoring to the organizational structure

0 4 8 12 16 20 24 28

Figure 9: Principles of monitoring microservices used.

10 (28.6%)Kubernetes
7 (20.0%)New Relic

6 (17.1%)Grafana
5 (14.3%)Amazon Elastic Container Service (ECS)

4 (11.4%)Prometheus
3 (8.6%)Datadog
3 (8.6%)ELK Stack

2 (5.7%)Istio
2 (5.7%)Kibana
2 (5.7%)Portainer Stack

5 (14.3%)Others

0 2 4 6 8 10 12

Figure 10: Monitoring tools used for microservices.

microservices, and the use of infrastructure resources. Mazlami et
al. [27] present a study with practitioners working with microser-
vice architectures. In this research all participants agreed with the
importance of robust logging and monitoring tools, to achieve a
mature level of microservice development. In addition, 90% of the
participants in their study believe that logging and monitoring
should be set up as early as the project starts.

In our study, most of the software companies (80.0%) use auto-
mated system monitoring mechanisms. For these companies, we
inquired what principles of monitoring microservices they use. Fig-
ure 9 shows the answers, where we observe that more than 60%
of the participants monitor both containers and what runs inside
them (65.7%) and APIs (62.9%). Orchestration systems are also used
by 54.3% of the participants. Figure 10 shows which tools these soft-
ware companies use for monitoring microservices. The most popu-
lar tools are Kubernetes (28.6%), New Relic (20.0%), Grafana (17.1%),
Amazon Elastic Container Service (14.3%), and Prometheus (11.4%).
The least popular tools were grouped in the Others item in the
figure. This item encompasses five tools that were cited once (2.8%):
Fluentd, Graylog, Splunk, Swagger, Zabbix.

Another reason that increases the need for monitoring microser-
vices and infrastructure is when the company makes APIs available
for other companies to consult information in the system. About
this subject, 21 (60.0%) participating companies argued that they
do not make it, whereas 14 (40.0%) of them offer microservices
migrated from the legacy system for use by third parties.

Regarding the use of log management tools, Figure 11 presents
the answers about this subject. The companies used a great diver-
sity of tools, and the most cited are ELK (40.0%), Fluentd (22.9%),
Kibana (11.4%) and Datalog (5.7%). The other tools listed in the fig-
ure are cited only once, such as Cloudwatch, Graylog, Log4J, New
Relic, SLF4J and Database event records. An interesting result ob-
served in the data collected is that a relevant number of companies,
namely 8 (22.9%), does not use management log tools.

Monitoring the network overhead is also an indispensable task
to adequately and efficiently use the microservice architecture. We
inquired the survey participants about how their companies support
this task (see Figure 12). Seven (20.0%) companies do not present

14 (40.0%)ELK
8 (22.9%)Fluentd

4 (11.4%)Kibana
3 (8.6%)Splunk

2 (5.7%)Datadog
6 (17.1%)Others

8 (22.9%)None

0 2 4 6 8 10 12 14 16

Figure 11: Log management tools used.

7 (20.0%)No monitoring
3 (8.6%)AWS Cloud
3 (8.6%)Kubernetes

2 (5.7%)Caching in memory
2 (5.7%)Load Balancers

1 (2.9%)Dedicated team
1 (2.9%)Nginx

0 2 4 6 8 10

Figure 12: Management of network overhead.

concerns related to network overhead. Other companies present
strategies to deal with this task such as: perform caching in memory
(5.7%), using load balancers (5.7%), and having a dedicated team
(2.9%). In addition, the answers include the use of tools such as:
AWS Cloud (8.6%), Kubernetes (8.6%), and Nginx (2.9%).

Misalignment. The results show that 14.3% of companies do
not use integration continuous tools. This represents a gap between
the literature and the practice. Some authors, such as [2], highlight
the fundamental importance of continuous integration to the qual-
ity of the system as a whole. Furthermore, 22.9% of companies
do not perform automatic log control, which demonstrates a low
level of maturity related to this subject. Wang et al. [42] discuss
the importance of a robust logging and monitoring framework, to
achieve a mature level of microservice development. Studies on
customization of microservices could support the companies which
deal with code duplication (22.9%).

4.2 Data Persistence in Microservices
Monolithic applications are usually designed around a single data-
base that manages all data and transactions, while microservice
architectures move towards data decentralization in which each
microservice manages its (potentially heterogeneous) persistence
mechanism [24]. The first architectural style is very simple to de-
ploy and brings the benefit of atomic transactions: all concurrency
and consistency aspects of the data operations are managed by the
database server as long as they occur inside a transaction, which
will be atomic (either entirely committed or canceled) [32].

Despite being convenient, a centralized database has the draw-
back of increasing the coupling in a microservice architecture since
it is a strong runtime dependency shared by all microservices, re-
ducing its autonomy [32]. Modernizing a monolithic system to an
architecture of loosely coupled, independent (micro)services in-
volves refactoring the centralized database into multiple smaller
databases, reducing the coupling. However, it requires concurrency
and consistency be managed by the application code, instead of the
central database manager [15]. As presented in Figure 13, the decen-
tralized persistence model was chosen by 20 (57.1%) participants,
and just 9 (25.7%) opted for a centralized database.

SBCARS ’21, September 27-October 1, 2021, Joinville, Brazil Thelma E. Colanzi, et al.

20 (57.1%)One dedicated database per microservice
9 (25.7%)One centralized database shared with all microservices

4 (11.4%)The database structure varies according to the system
2 (5.7%)A distributed database

0 4 8 12 16 20 24 28

Figure 13: Type of database structure used.

To characterize how persistence aspects affected the usage of a
microservice architecture, we asked 10 specific questions regarding
such concern, which were answered by 26 participants.

Two questions were formulated to assess if the database and its
structures are sources of coupling. Eleven (45.8%) answered that
there were situations where changes in the database structure of
one microservice affected another microservice, whereas 15 (54.2%)
have not reported such an issue. Nine (34.6%) reported that some
database tables are involved in transactions of more than just one
microservice. These answers indicate that the database, its struc-
tures and transactions are a source of coupling in microservice-
based systems. Nunes et al. [33] include such concerns in their
approach, which takes the application transactional contexts as an
input in the process of identifying microservice candidates that
best correlate to business capabilities.

Business persistent classes (entities) are shared between mi-
croservices in 6 (23.1%) of the cases. The participants P12, P9, and
P16 answered an open question about the approach adopted to deal
with this situation. They answered, respectively: “Maven shared
library”, “common package” and “a library containing the entities”.
These answers reinforce the existence of coupling in such scenarios.

The consistency of database operations involving multiple mi-
croservices is managed in the application logic in 17 (65.4%) of the
companies, indicating a high level of adherence to the concept of mi-
croservice persistence autonomy. Seven (26.9%) answered that they
use atomic transactions, which is expected in centralized database
scenarios. Strangely, 4 (15,4%) of these companies rely on atomic
transactions in a decentralized scenario. This may indicate that
there is no business transaction scattered between microservices or
that some hidden consistency scheme is in place. Finally, 2 (3.8%)
participants have not provided an answer about this subject.

Database transactions were an input to the architecture design
process in 19 (73.1%) companies, of which 13 (50.0%) applied data-
base refactoring techniques to allow better microservice modular-
ization. Five (19.2%) opted to keep the transactions as they were,
even that affected the modularization level. Six (23.1%) have not
analyzed the database transactions at all. This result indicates that
analyzing database transactions can be more explored as a source
of information for migrating to a microservice architecture, which
can be addressed by further research.

Database performance and scalability were a concern to 15
(57.7%) participants, and all had in common the decentralized data-
base model. They reported many different strategies to deal with
this concern: Amazon auto-scaling, Command Query Responsibil-
ity Segregation (CQRS), load monitoring, distributed cache, cloud-
based database with frequent monitoring, partitioning, load testing,
and events and asynchronous processing. This variety of responses
show that there is room for improvement that further research can

explore. Surprisingly, 11 (42.3%) of the participants have not consid-
ered database performance and scalability for the modernization,
which also can be investigated to determine whether the database
is not a bottleneck or was simply neglected, which could hurt the
goal of achieving a better system performance.

Finally, we asked the participants using a centralized database
what are complicating factors to adopt a decentralized model. The
answers included: database licensing cost, the separation of con-
texts, proprietary database managed by a third party company, data
maintenance and integrity, the database is shared with the legacy
and BI applications, and resistance from the database administrator.
Except for this latter, most of these issues are addressed exactly
by partitioning the database and adopting a lighter, potentially
open-source, commodity database mechanism per microservice:
licensing costs could go down, third-party dependency mitigated,
better isolation from the legacy, and business intelligence.

These findings show that data management plays a significant
role in designing a microservice architecture and are aligned with
the findings of Laigner et al. [34], that cite challenges regarding how
to deal with aspects of data consistency and separation of contexts
as there are many patterns to address this matter and the current
database management systems are not adapted to this scenario.

4.3 Answering RQs
In this section we answer the posed sub-RQs.
RQ1. Why do companies migrate monolithic legacy systems
to microservices?

The migration to microservice architecture is motivated by driv-
ing forces from operational, technical, and organizational perspec-
tives. In addition, we observe that the three most common driving
forces are the same identified in the literature modernization pro-
cess roadmap: Easier maintenance and evolution, Optimized scala-
bility, and Independent and automated deploy. These three forces
were cited by more than 70% of companies.
RQ2. How do companies perform the migration of monolithic
legacy systems to microservices?

The results of the survey show that every activity of the mod-
ernization process roadmap is realized by most companies. Around
50% of them performed an incremental migration to microservices
decomposing the legacy system by business capabilities. The main
criteria considered to define the microservice candidates are scal-
ability (85.7%), requirements (45.7%), and reusability (45.7%). Most
companies (64.5%) use more than one programming language per
project. Unit and integration testing are executed by at least 77%
of the companies. Only 22.9% of the participating companies deal
with code duplication and they have not a standard policy to ad-
dress the customization source code needs. The communication
interface to integrate microservices is mainly API REST. Almost
all companies (97.1%) use cloud infrastructure services, mainly the
Amazon Web Services. Spring Boot, Jenkins, Docker, Kubernetes
and ELK are the most cited technologies for infrastructure con-
figuration, continuous integration, containerization, microservice
monitoring, and logging management, respectively. This panorama
shows the practice and the literature of modernizing legacy systems
with microservices do speak the same language. The driving forces
that motivate the migration to microservices are the same pointed

Are we speaking the industry language? Modernizing legacy systems with microservices SBCARS ’21, September 27-October 1, 2021, Joinville, Brazil

by the literature as the main advantages of microservices as well as
the strategy and the criteria taking into account to the migration
process are also aligned with the literature. Furthermore, the use
of at least two programming languages in a project reinforces the
technology flexibility provided by microservices.
RQ3. What are the aspects of data persistence considered in
the modernization of legacy systems with microservices?

Most of the companies reports decentralizing the database (57.1%),
73.1% analyzes the database transactions to reason about the new
architecture, and 50.0% refactored the database to obtain better
results in the migration to microservices. Data consistency in data-
base operations involving multiple microservices is managed in the
application logic (65.4%) and the performance of the database is a
concern to 57.7% of the companies. This scenario shows that data
persistence is an important concern in the industry when develop-
ing microservices, and that the practice and the literature are also
speaking the same language regarding this subject.

5 THREATS TO VALIDITY
We present here the threats to validity and their mitigations.
Internal Validity: one potential threat is the diversity of partici-
pants and companies. Although our sample has not a regular distri-
bution over Brazilian states, we cover the states that have higher
concentration of software companies. As expected, most partici-
pants work in Brazilian companies, which is in accordance with
the scope defined for our study. Another threat is concerned to
the modernization process [43] chosen to represent the theoretical
knowledge produced in academia. If this process is changed, the
companies’ experience will be the same. Thus, the terminology or
number of activities in the modernization process could be different,
but the meaning of the final results would be similar.
External Validity: we cannot argue that the survey sample rep-
resents all types of companies, considering size, problem domain,
localization, among other company characteristics, what can im-
pact on the generalization of the results. However, we mitigated
this threat by making the questionnaire available in different media
and social networks, to reach the largest number of participants,
regardless of geographic location and company profile.
Construct Validity: several questions in the survey included a
list of predefined responses, so the participants may have opted to
choose one of these responses, rather than to fill in an open text field,
describing other options more suited to their reality. However, we
complemented our questionnaire with options collected from grey
literature. These options were validated in the pilot study conducted
with an experienced developer. The decision of using a high number
of closed-ended questions was to reduce the complexity of filling
out the questionnaire (the time to complete it was 10 minutes in
the pilot study), and thereby reducing the participants’ fatigue. In
addition, the interpretation of open-ended questions performed by
the authors might have been influenced by some type of bias.

6 RELATEDWORK
There are many pieces of work reporting approaches, techniques,
and methods to modernize legacy systems with microservices, as

discussed in secondary studies [11, 12, 14, 35, 43]. All these sec-
ondary studies brings contributions to understand different aspects
of the modernization, as for example, the modernization process
roadmap proposed in [43]. However, they do not validate their find-
ings in practice, which is our focus. Other studies investigate the
state of the practice on using microservices, but without focusing
on the modernization process of legacy systems [3, 16, 21, 41, 44].

Several pieces of work report experiences and lessons learned
of modernization conducted in industry [1, 5, 17, 18, 26, 28, 29, 38].
However, they provide a discussion considering only the specific
context in which the modernization took place. Yet, they do not
analyze their findings against existing literature. Ourwork advances
in this direction, presenting results in the light of existing studies.

Other studies present surveys with practitioners. For example,
Taibi et al. [40], as a result of a survey among experienced practi-
tioners, presented a process framework based on the comparison
of three different migration processes. In addition, these authors
described motivations and issues that commonly take place dur-
ing the migrations. Di Francesco et al. [10] conducted a survey,
targeting practitioners involved in the process of migrating their
applications, to collect information about the performed activities
and the challenges faced. Carvalho et al. [7] also conducted a sur-
vey with practitioners that participated in the modernization of
legacy systems with microservices. In an extension of this survey,
these authors also investigated how reuse and customization are
leveraged after the modernization with microservices [6]. With
the similar goal, Wang et al. [42] performed a survey and inter-
views with practitioners, investigating best practices learned by
practitioners that adopted microservices. Finally, Fritzsch et al. [13]
report a qualitative study on intentions, strategies, and challenges
in the context of migrations to microservices. Differently from our
work, which focus on a confirmatory study of the entire modern-
ization process, those studies conducted exploratory studies only
considering specific modernization scenarios, activities, or issues.

Regarding the database decomposition, Newman [32] describes
ways to achieve decentralization of data and transactions through
many design patterns. Differently, our study does not focus on what
patterns practitioners have adopted, but rather whether they were
concerned about database during the modernization, whether the
data is decentralized, and if they dealt with eventual consistency.

7 CONCLUSION
This paper reports on a survey to investigate whether the industry
and academia are "speaking the same language" with respect to
the modernization of legacy systems with microservices. Practi-
tioners from 35 companies participated of this survey. We used a
modernization process roadmap [43] to conduct and organize our
analysis. First, the obtained results pointed out that moderniza-
tion driving forces vary from superior to technology flexibility –
the most expected benefits from microservice architecture. Related
to the migration process, we observed that every activity of the
modernization process roadmap is realized by most participating
companies. Some misalignments were detected, which can be ex-
plored in further research. For instance, despite most companies
using decentralized databases, there are some research opportuni-
ties related to data persistence that can be addressed in the future.

SBCARS ’21, September 27-October 1, 2021, Joinville, Brazil Thelma E. Colanzi, et al.

As a further work we plan to carry out this survey with a greater
number of companies and a larger diversity of countries and Brazil-
ian states. We are also starting a comprehensive study regarding
data persistence aspects to investigate issues such as performance,
usage of relaxed consistency models, and analysis of database trans-
actions in the process of modernization with microservices.

ACKNOWLEDGMENTS
This work is supported by CNPq grants 151723/2020-6, 428994/2018-
0, 408356/2018-9, 434969/2018-4, 309844/2018-5, 421306/2018-1;
FAPERJ grants 22520-7/2016, 010002285/2019, and 202073/2020.

REFERENCES
[1] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. 2015. Migrating

to cloud-native architectures using microservices: an experience report. In 4th
European Conference on Service-Oriented and Cloud Computing (ESOCC). 201–215.

[2] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. 2016. Microservices
architecture enables devops: Migration to a cloud-native architecture. IEEE
Software 33, 3 (2016), 42–52.

[3] Justus Bogner, Jonas Fritzsch, Stefan Wagner, and Alfred Zimmermann. 2019. Mi-
croservices in Industry: Insights into Technologies, Characteristics, and Software
Quality. In 16th Intl. Conference on Software Architecture (ICSA). 187–195.

[4] Amina Boubendir, Emmanuel Betin, and Noemie Simons. 2017. VNF-as-a-service
design through micro-services disassembling the IMS. In 20th Conference on
Innovations in Clouds, Internet and Networks (ICIN). 203–210.

[5] Antonio Bucchiarone, Nicola Dragoni, Schahram Dustdar, Stephan T. Larsen,
and Manuel Mazzara. 2018. From Monolithic to Microservices: An Experience
Report from the Banking Domain. IEEE Software 35, 3 (2018), 50–55.

[6] Luiz Carvalho, Alessandro Garcia, Wesley K. G. Assunção, Rodrigo Bonifácio,
Leonardo P. Tizzei, and Thelma Elita Colanzi. 2019. Extraction of Configurable
and Reusable Microservices from Legacy Systems: An Exploratory Study. In 23rd
Intl. Systems and Software Product Line Conference (SPLC). 26–31.

[7] Luiz Carvalho, Alessandro Garcia, Wesley K. G. Assunção, Rafael de Mello, and
Maria Julia de Lima. 2019. Analysis of the Criteria Adopted in Industry to Extract
Microservices. In 7th Intl. Workshop on Conducting Empirical Studies in Industry
/ 6th Intl. Workshop on Software Engineering Research and Industrial Practice
(CESSER-IP). 22–29.

[8] Luiz Carvalho, Alessandro Garcia, Thelma Elita Colanzi, Wesley K. G. Assunção,
Juliana Alves Pereira, Baldoino Fonseca, Márcio Ribeiro, Maria Julia de Lima,
and Carlos Lucena. 2020. On the Performance and Adoption of Search-Based
Microservice Identification with toMicroservices. In 36th Intl. Conference on
Software Maintenance and Evolution (ICSME). 569–580.

[9] Rui Chen, Shanshan Li, and Zheng Li. 2018. From Monolith to Microservices: A
Dataflow-Driven Approach. In 25th Asia-Pacific Software Engineering Conference
(APSEC). 466–475.

[10] Paolo Di Francesco, Patricia Lago, and Ivano Malavolta. 2018. Migrating to-
wards microservice architectures: an industrial survey. In 15th Intl. Conference on
Software Architecture (ICSA). 29–2909.

[11] Paolo Di Francesco, Patricia Lago, and Ivano Malavolta. 2019. Architecting with
microservices: A systematic mapping study. Journal of Systems and Software 150,
0 (2019), 77–97.

[12] P. D. Francesco, I. Malavolta, and P. Lago. 2017. Research on Architecting Mi-
croservices: Trends, Focus, and Potential for Industrial Adoption. In 14th Intl.
Conference on Software Architecture (ICSA. 21–30.

[13] Jonas Fritzsch, Justus Bogner, Stefan Wagner, and Alfred Zimmermann. 2019.
Microservices Migration in Industry: Intentions, Strategies, and Challenges. In
35th Intl. Conference on Software Maintenance and Evolution (ICSME). 481–490.

[14] Jonas Fritzsch, Justus Bogner, Alfred Zimmermann, and Stefan Wagner. 2018.
From monolith to microservices: a classification of refactoring approaches. In 1st
Intl. Workshop on Software Engineering Aspects of Continuous Development and
New Paradigms of Software Production and Deployment (DEVOPS). 128–141.

[15] A. Furda, C. Fidge, O. Zimmermann, W. Kelly, and A. Barros. 2018. Migrating
Enterprise Legacy Source Code to Microservices: On Multitenancy, Statefulness,
and Data Consistency. IEEE Software 35, 3 (2018), 63–72.

[16] Javad Ghofrani and Daniel Lübke. 2018. Challenges of Microservices Architecture:
A Survey on the State of the Practice.. In 10th Central-European Workshop on
Services and their Composition (ZEUS). 1–8.

[17] Jean-Philippe Gouigoux and Dalila Tamzalit. 2017. From Monolith to Microser-
vices: Lessons Learned on an Industrial Migration to aWeb Oriented Architecture.
In 14th Intl. Conference on Software Architecture Companion (ICSA). 62–65.

[18] Jean-Philippe Gouigoux and Dalila Tamzalit. 2019. “Functional-First” Recommen-
dations for Beneficial Microservices Migration and Integration Lessons Learned
from an Industrial Experience. In Intl. Conf. on Software Architecture. 182–186.

[19] Penny Grubb and Armstrong A. Takang. 2003. Software maintenance: concepts
and practice. World Scientific.

[20] Sara Hassan, Nour Ali, and Rami Bahsoon. 2017. Microservice Ambients: An
Architectural Meta-Modelling Approach for Microservice Granularity. In 14th
Intl. Conference on Software Architecture (ICSA). 1–10.

[21] Holger and Hasselbring Wilhelm Knoche. 2019. Drivers and Barriers for Mi-
croservice Adoption – A Survey among Professionals in Germany. Enterprise
Modelling and Information Systems Architectures (EMISAJ) – International Journal
of Conceptual Modeling 14, 1 (2019), 1–35.

[22] H. Knoche and W. Hasselbring. 2018. Using Microservices for Legacy Software
Modernization. IEEE Software 35, 3 (2018), 44–49.

[23] Valentina Lenarduzzi and Outi Sievi-Korte. 2018. On the Negative Impact of Team
Independence in Microservices Software Development. In 19th Intl. Conference
on Agile Software Development: Companion (XP). 1–4.

[24] James Lewis and Martin Fowler. [n.d.]. Microservices: a Definition of This New
Architectural Term. https://www.martinfowler.com/articles/microservices.html

[25] Johan Linåker et al. 2015. Guidelines for Conducting Surveys in Software Engineer-
ing. Technical Report. Lund University.

[26] Welder Luz, Everton Agilar, Marcos César de Oliveira, Carlos Eduardo R. de
Melo, Gustavo Pinto, and Rodrigo Bonifácio. 2018. An Experience Report on the
Adoption of Microservices in Three Brazilian Government Institutions. In 32nd
Brazilian Symposium on Software Engineering (SBES). 32–41.

[27] G Mazlami, J Cito, and P Leitner. 2017. Extraction of microservices from mono-
lithic software architectures. In 24th Intl. Conf. on Web Services (ICWS). 1–8.

[28] Manuel Mazzara, Nicola Dragoni, Antonio Bucchiarone, Alberto Giaretta,
Stephan T. Larsen, and Schahram Dustdar. 2018. Microservices: Migration of a
Mission Critical System. IEEE Transactions on Services Computing (2018), 1–1.

[29] Alan Megargel, Venky Shankararaman, and David K. Walker. 2020. Migrating
from Monoliths to Cloud-Based Microservices: A Banking Industry Example. In
Software Engineering in the Era of Cloud Computing. 85–108.

[30] Rômulo Manciola Meloca, R. Ré, and André Luis Schwerz. 2018. An Analysis of
Frameworks for Microservices. Latin American Computer Conf. (2018), 542–551.

[31] Davide Neri, Jacopo Soldani, Olaf Zimmermann, and Antonio Brogi. 2019. Design
principles, architectural smells and refactorings for microservices: a multivocal
review. SICS Software-Intensive Cyber-Physical Systems 35, 1 (2019), 3–15.

[32] Sam Newman. 2019. Monolith to Microservices: Evolutionary Patterns to Transform
Your Monolith. O’Reilly Media.

[33] Luís Nunes, Nuno Santos, and António Rito Silva. 2019. From a Monolith to a
Microservices Architecture: An Approach Based on Transactional Contexts. In
13th European Conference on Software Architecture (ECSA 2019). 37–52.

[34] Rodrigo Nunes Laigner, Yongluan Zhou, Marcos Antonio Vaz Salles, Yijian Liu,
and Marcos Kalinowski. 2021. Data Management in Microservices: State of
the Practice, Challenges, and Research Directions. Proceedings of the VLDB
Endowment 14, 13 (2021).

[35] Francisco Ponce, Gastón Márquez, and Hernán Astudillo. 2019. Migrating from
monolithic architecture to microservices: A Rapid Review. In 38th Intl. Conference
of the Chilean Computer Science Society (SCCC). 1–7.

[36] Zhongshan Ren, Wei Wang, Guoquan Wu, Chushu Gao, Wei Chen, Jun Wei, and
Tao Huang. 2018. Migrating Web Applications from Monolithic Structure to
Microservices Architecture. In Asia-Pacific Symposium on Internetware. 1–10.

[37] Chris Richardson and Floyd Smith. 2016. Microservices - From Design to Deploy-
ment. "NGINX, Inc.".

[38] Santonu Sarkar, Gloria Vashi, and PP Abdulla. 2018. Towards transforming an
industrial automation system from monolithic to microservices. In 23rd Intl.
Conference on Emerging Technologies and Factory Automation (ETFA). 1256–1259.

[39] Jacopo Soldani, Damian Andrew Tamburri, and Willem-Jan Van Den Heuvel.
2018. The pains and gains of microservices: A Systematic grey literature review.
Journal of Systems and Software 146, 1 (2018), 215–232.

[40] Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. 2017. Processes, motivations,
and issues for migrating to microservices architectures: An empirical investiga-
tion. IEEE Cloud Computing 4, 5 (2017), 22–32.

[41] Markos Viggiato, Ricardo Terra, Henrique Rocha, Marco Tulio Valente, and
Eduardo Figueiredo. 2018. Microservices in practice: A survey study. In 6th
Workshop on Software Visualization, Evolution and Maintenance (VEM). 1–8.

[42] Yingying Wang, Harshavardhan Kadiyala, and Julia Rubin. 2021. Promises and
challenges of microservices: an exploratory study. Empirical Software Engineering
26, 4 (2021), 1–44.

[43] Daniele Wolfart, Wesley K. G. Assunção, Ivonei F. da Silva, Diogo C. P. Domingos,
Ederson Schmeing, Guilherme L. Donin Villaca, and Diogo do N. Paza. 2021.
Modernizing Legacy Systems with Microservices: A Roadmap. In 25th Evaluation
and Assessment in Software Engineering (EASE). 149–159.

[44] He Zhang, Shanshan Li, Zijia Jia, Chenxing Zhong, and Cheng Zhang. 2019. Mi-
croservice Architecture in Reality: An Industrial Inquiry. In 16th Intl. Conference
on Software Architecture (ICSA). 51–60.

[45] TomČerný, Michael Donahoo, andMichal Trnka. 2018. Contextual understanding
of microservice architecture: current and future directions. ACM SIGAPP Applied
Computing Review 17, 1 (2018), 29–45.

https://www.martinfowler.com/articles/microservices.html

	Abstract
	1 Introduction
	2 Modernization Process Roadmap
	3 Study Design and Execution
	3.1 Characterization of Participants
	3.2 Companies not using Microservices

	4 Results and Analysis
	4.1 Modernization Process Roadmap Activities
	4.2 Data Persistence in Microservices
	4.3 Answering RQs

	5 Threats to Validity
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

